Closing Tue, Apr. 4: 12.1,12.2,12.3 Closing Thu, Apr. 6: 12.4(1)(2),12.5(1) Please check out the online review and summary sheets. Also, WS 1 solutions are online.

If the vector is drawn with the tail at the origin and that results in the head being at the point $\left(v_{1}, v_{2}, v_{3}\right)$, then we denote the vector by

$$
\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle
$$

12.2 Vectors Intro

Goal: Introduce vector basics.
Def'n: A vector is a quantity with magnitude and direction.

We depict a vector with an arrow; the length is the magnitude. The 'tail' of arrow is called the initial point and the 'head' is called the terminal point.

Basic fact list:

- Two vectors are equal if all components are equal.
- We denote magnitude by

$$
|\boldsymbol{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

- To denote the vector from $\mathbf{A}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)$ to $\mathbf{B}\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right)$, we write

$$
\overrightarrow{A B}=\left\langle\mathrm{b}_{1}-\mathrm{a}_{1}, \mathrm{~b}_{2}-\mathrm{a}_{2}, \mathrm{~b}_{3}-\mathrm{a}_{3}\right\rangle
$$

- Scalar Multiplication

If c is a constant, then we define

$$
\mathbf{C V}=\left\langle\mathrm{CV}_{1}, \mathrm{CV}_{2}, \mathrm{CV}_{3}\right\rangle,
$$

which scales the magnitude by a factor of c .

- A unit vector has length one.

Note:

$$
\begin{gathered}
\frac{1}{|\boldsymbol{v}|} \boldsymbol{v}=\text { "unit vector in the same } \\
\text { direction as } \mathbf{v} \text { ". }
\end{gathered}
$$

- We define the vector sum by

$$
\begin{aligned}
\mathbf{v}+\mathbf{w} & =\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\rangle+\left\langle\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\rangle \\
& =\left\langle\mathrm{v}_{1}+\mathrm{w}_{1}, \mathrm{v}_{2}+\mathrm{w}_{2}, \mathrm{v}_{2}+\mathrm{w}_{2}\right\rangle
\end{aligned}
$$

- Standard unit basis vectors:

$$
\begin{aligned}
& \mathbf{i}=\langle 1,0,0\rangle \\
& \mathbf{j}=\langle 0,1,0\rangle \\
& \mathbf{k}=\langle 0,0,1\rangle
\end{aligned}
$$

- In 2D, you may be given the angle, θ, and length, r, as shown

Remember,

$$
x=r \cos (\theta), y=r \sin (\theta), x^{2}+y^{2}=r^{2}
$$

- In 2D, if you want a vector that is parallel to a line with slope m, then the vector <1, $\mathrm{m}>$ works.

12.3 Dot Products

If $\mathbf{a}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle$ and $\mathbf{b}=\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right\rangle$
Then we define the dot product by:

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Basic fact list:

- Manipulation facts
(works like regular multiplication):

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =\mathbf{b} \cdot \mathbf{a} \\
\mathbf{a} \cdot(\mathbf{b}+\mathbf{c}) & =\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c} \\
\mathrm{c}(\mathbf{a} \cdot \mathbf{b}) & =(\mathbf{c} \mathbf{a}) \cdot \mathbf{b}=\mathbf{a} \cdot(\mathrm{cb})
\end{aligned}
$$

$$
(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}+\mathbf{b})=? ? ?
$$

- Helpful fact:

$$
\mathbf{a} \cdot \mathbf{a}=\mathrm{a}_{1}^{2}+a_{2}^{2}+a_{3}^{2}=|\boldsymbol{a}|^{2}
$$

The most important fact:
$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos (\theta)$

Proof (not required):
By the Law of Cosines:

$$
|\mathbf{b}-\mathbf{a}|^{2}=|\boldsymbol{a}|^{2}+|\boldsymbol{b}|^{2}-2|\mathbf{a}||\mathbf{b}| \cos (\theta)
$$

The left-hand side expands to

$$
\begin{aligned}
|\mathbf{b}-\mathbf{a}|^{2} & =(\mathbf{b}-\mathbf{a}) \cdot(\mathbf{b}-\mathbf{a}) \\
& =\mathbf{b} \cdot \mathbf{b}-2 \mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{a} \\
& =|\mathbf{b}|^{2}-2 \mathbf{a} \cdot \mathbf{b}+|\mathbf{a}|^{2}
\end{aligned}
$$

Subtracting $|\boldsymbol{a}|^{2}+|\boldsymbol{b}|^{2}$ from both sides gives

$$
-2 \mathbf{a} \cdot \mathbf{b}=-2|\mathbf{a}||\mathbf{b}| \cos (\theta) .
$$

Divide by -2 to get the result. (QED)

Most important consequence:
If \mathbf{a} and \mathbf{b} are orthogonal, then

$$
\mathbf{a} \cdot \mathbf{b}=0
$$

Also:
If \mathbf{a} and \mathbf{b} are parallel, then

$$
\begin{gathered}
\mathbf{a} \cdot \mathbf{b}=|a||b| \\
\quad \text { or } \\
\mathbf{a} \cdot \mathbf{b}=-|a||b|
\end{gathered}
$$

Projections:

